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MULTIVALUED WAVES AND THE RICHTMYER-MESHKOYV INSTABILITY AS THE CAUSES
OF THE FORMATION OF GALAXIES
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A few months ago, the Max Planck Institute (Dresden, Germany) organized an International Seminar for
outstanding researchers of such a remarkable phenomenon as “extreme waves”. The seminar was led by such fa-
mous professors as Nail Akhdiev (Australian National University, Canberra, Australia) [1], Helmut Brand (Uni-
versity of Bayreuth, Germany) [2] and Amin Chabchub (Kyoto University, Japan) [3].

The phenomenon of "Extreme waves" is remarkable since widely spread in Nature, and at the same time it is
used widely in technology. In particular it is used in modern optical communications (nonlinear optics). The re-
sults of the Workshop are widely discussed by experts. They preview promising new directions springing from
group efforts.

This article is a review of my seminar presentation. At the same time, it includes some results of my book,
which is being prepared for publication. The main outlines of this book are outlined by Marat Aksanovich
Ilgamov in his article [5]. The book is devoted to multivalued waves existing in various scalar fields. An attempt
is made to describe, on this basis, the entire variety of fundamental physical phenomena of the world around us,
starting with quantum phenomena and ending with the emergence and initial development of the Universe.

It is known that Einstein tried to build a unified (interdisciplinary) field theory that would unite all interac-
tions in nature into a single system. My report to Dresden made an attempt to use this idea, which was developed
in the mentioned book and this article.

The first three parts of this article examine the stability of Richtmyer—Meshkov and Faraday waves. The last
part discusses the theory of the origin of the Universe proposed in [4, 12]. The birth of galaxies in the first moments
of the process of spherical expansion of our Universe is associated with the Richtmyer—Meshkov instability.

Key words: nonlinear Klein—Gordon equation, instability, Faraday waves, James Webb Space Telescope,
origin of galaxies, revolution in cosmogony.
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where C is the perturbation of the speed c. In this

Here C, c., m;, m, and X are constants. We sub- case Eq. (5) yields that
stitute (2) in Eq. ( 1). As a result it gives 4e® +(2cc,+c )P +2D +D )=
D, -D, =C+md+m®d -1’ (3 i S
no T T PeTTR 3 = C+m® +m,®* - LD, )
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Considering (9) we assume following expres-
sion
DY =J(r)+ j(s), (11)
We emphasise that this simple expression
takes place only if the resonance condition (6) oc-

curs. Then Eq. (10) is considered. After the integra-
tion we found,
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j*(r)—mzjjds—mzszds+kjj3ds = 7,(s).(13)
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We will not take into account the interaction
of waves J(r) and j(s). The last expression can
be represented in two versions with an appropriate
choice of arbitrary functions J,(7) and J,(s)

4c2(@P P )= T (r)x jy (s)—m’ (s £ 1)) —

—mysJ> Fm,rj’ +MsJ 77 )+ C, £ C,. (15)
The choice of the option depends on the
boundary conditions at the ends of the resonator. Let

O =P, -®, =0at x=0and x=L. (16)
Thus, we will consider natural or parametri-
cally excited resonant waves. We assume the func-

tions J; () and J (s) as seed ones. The boundary
condition at x = 0 is satisfied automatically, if

j=J(s) and J5(t) = j;(t)

The boundary condition at x = L gives the
equation

J —J AL Ll [-mP (J(r)+J(s)—

—my(J*(r)+J7 (s)) +

+MI (1) +J(s)] =1 cos" ot +1C,
There is an appropriate choice of seed perturbations
using @7, and ©Z; .

We will further consider waves with a period
equal to L. In this case, with exact resonance

J, =J,.Let n=1.In this case the equation (17)
yields

L (r)+rJ*(r)+RI(r)+ Acosoc ' r =1 C. (18)
Here 7. =—-m,\"', R=-m’A"", A= —IN'Lel
The equation for j(s) is written as (18). The
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method of its solution is discussed in detail in [4,
12]. Then we find the sum

O =J(r)+ j(s). (19)
Thus, we have obtained an expression defining the
scalar field in the resonator. Both continuous and
multivalued waves can occur there.

Continuous linear and nonlinear waves have
been well studied. A huge scientific literature is
devoted to them. But the same cannot be said for
multivalued waves. There are only a few books, in
one way or another, dedicated to them [4, 12].
When studying them, algebraic equations similar to
(18) were used. The difficulty of studying multi-
valued waves is that they are usually unstable, and
there are a few examples of their experimental
study.

Below we will give several examples of ex-
perimentally recorded extreme multivalued waves.
To describe them mathematically, three versions of
the equation (18) will be used.

2. Waves with hair and the Richtmyer—
Meshkov instability.

The most complex version of the wave profile
occurs when it begins to transform (enclose) with
vortices. This case is shown in Fig. 1.

Of course, this case is the most difficult,
since it directly passes into the non-stationary part
of the development of the wave profile associated
with the appearance of vortices on it. This evolu-
tion is already entering the region of turbulence,
and is beyond the scope of this paper. At the same
time, this question has great interest and very
close to the problem of MW, which is considered
in this paper.
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Fig. 2. Wave profiles calculated for four values of A

More than 10 years ago, the book were pub-
lished [4], where the concept of catastrophic waves
was introduced, that is, waves whose profile may
contain folds and jumps. Here we must remember
that the wave profile can have three values at each
point according to (18). The jumps further increase
and complicate the possible wave profiles.

Taking this into account we continue our
study of the influence of the magnitude of the ini-
tial (seed) disturbance on J(r). The following
equations were used in the calculations:

J(r)=0.0011J(r)+ Asin(5tr/ L)=0. (20)

Here 7 changes from 0 to L . The results are
presented in Fig. 2. When constructing the curves,
we used either two solutions or one from the exist-
ing three solutions to clearly illustrate the possibil-
ity of jumps in the system.

There are two independent continuous wave
profiles resembling cnoidal waves at A = 0.02412 .
Local jumps appear connecting these solutions with
a very small increase in amplitude to 0.024126.
With a further increase in amplitude, these local
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jumps break up into two jumps. As a result, a very
peculiar wave structure appears, which is clearly
visible in the case of A =0.04.

If we accept the possibility of the existence of
waves with discontinuities, then the waves pre-
sented above can be interpreted as traveling waves
carrying vortices or waves with hair (waves with
wings). The similar waves are also presented in
Fig. 3.

The profiles calculated for A=0.0245 (top)
and A=0.04 (bottom) are shown. For both cases,
two options for their interpretation are presented. In
the first option, we illustrated the possibility of the
simultaneous existence of two differently directed
vortices concentrated near the wave centers, as well
as jets (“hair” or “wings”) bordering the vortices
(left). In the second option of the calculations (on
the right), only jets (“hair” or “wings”) are shown.
Similar options are presented for the case A =0.04.
However, in this case, we assumed that the emer-
gence of vortices excludes the simultaneous exist-
ence of jets (“hair” or “wings™) in the wave for-
mations (bottom, left).
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Fig. 3. Wave profiles illustrating the possibility of the emergence of vortices and jets (“hairs” or “wings”) as part
of traveling waves. The arrows show the directions of movement of the field particles that create the vortices
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Fig. 5. Waves with hair (waves with wings) generating during the Richtmyer—Meshkov instability [7]

Figs. 4 and 5 show certain results from [7].
There shock tube experiments are used to study the
very late-time development of the Richtmyer—
Meshkov instability from a nearly sinusoidal, ini-
tial perturbation into a fully turbulent flow. The
interface is generated by two opposing gas flows.
The results from [7] are given as an illustration to
Figs. 2 and 3.

In conclusion, we note that we have consid-
ered waves J(7). In the case considered, their

amplitude is several times greater than the ampli-
tude of the initial perturbation A. Therefore, the
initial perturbation will not change the presented
results.

3. Counterintuitive Faraday waves on the
free surface of a liquid.

Let us consider the case of two-frequency ex-
citation. We used equation which has the form

(18).
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The transresonance evolution of waves is studied,
when parameter R varies from negative values to posi-
tive values through zero. The excitatory function was
specified by one of the following expressions:
0.05coskr  or  0.05coskr-0.025cos2kr  or
0.05coskr-0.05cos2kr. The calculation results are
presented in Fig. 6.

It can be seen that the second harmonic can
greatly change the nature of wave formation in the
system.

The appearance and evolution of various
multivalued surface waves is shown in Fig. 7. The
appearance of these waves and the atomization of
the surface is determined by the capillary effect,
which in this case is much stronger than the effect
of gravity. In general, the experimental data are
consistent with the calculation (Fig. 6) and it is
clear that the results of our theory presented above
are in qualitative agreement with experiment.

We got an interesting result that can be inter-
preted in completely different ways. In particular, it

Fig. 7. Surface instabilities resembling Faraday waves [8]

can be associated with processes that arise during
the surface cavitation.

In Fig. 8 results are shown of acoustic
cavitation generated by ultrasonic vibrations. It is
found that strong forcing leads to the excitation of
nonlinear surface waves on gas—liquid interfaces. If
the excitation is strong enough, then both the
appearance of droplets and the generation of air
bubbles occur simultaneously. Qualitatively, these
processes correspond to the scheme described by
the equation (18) and shown in Fig. 6.

4. Counterintuitive Faraday waves on the
contact surface of two liquids.

A dynamic instability of an interface of two
liquids is the well-studied phenomenon.

However, this is only true as long as the
waves are very weak. We can expect the appear-
ance of multivalued waves, when their amplitude
increases.
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This was clearly shown in a wonderful article
[6]. There a tank containing a two-layer liquid
with a free surface was considered. During verti-
cal excitations, the layer interface and the free
surface can be excited separately or simultaneous-
ly. Of particular interest to us are resonant waves
at the interface between layers. Analysis of these
waves showed that their surprising multivalued
may be associated with the contribution of the
combined effects of vertical acceleration of the
fluid and external excitation. This contribution
comes down to the fact that the upper layer of lig-
uid in some cases becomes significantly “heavier”
than the lower layer.

The experiments used a container 1 m long,
0.15 m wide and 0.3 m high. The thickness of the
lower, heavier layer of liquid was 0.05 m. The
thickness of the upper layer of liquid was 0.2 m.
The layer was excited according to the harmonic
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law and lasted approximately 15 seconds. The ac-
celeration amplitude of vertical external excitation
is approximately 0.85 g. The snapshots of the free
surface and interface at the mid-plane of the tank
width at different moments of time are shown in
Fig. 9.

We will not discuss the results of the experi-
ment here. The reader can find a discussion in the
article [6]. Let us note only the most important for
us. It can be seen that from the beginning of para-
metric excitation there is a very strong change in
the profile of Faraday waves from almost harmonic
to multivalued. They reminiscent of waves with
hair or the breakdown of a standing wave into two
traveling waves. It is important for us that, albeit
very roughly, the wave evolution retains some
semblance of periodicity over several cycles of ex-
citation. Afterwards, the flow cecomes chaotic as
can be seen from Figs. 9 (i-1).

Fig. 8. Selected frames showing the entrapment of gas bubbles and separation of drops during surface cavitation
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Fig. 9. Snapshots of Faraday waves on the free surface and the interface [6]
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Fig. 10. The beginning of the formation of waves with hair

To model this wave process we used the fol-
lowing equation

J?—=0.005J, +0.0001cos tNL'r —
—0.00004 cos3ntNL'r = 0.

The equation for j, has a similar form.

21

We believe that the sum J, + j, (19) qualita-

tively describes the dynamics of parametrically
excited waves on the contact surface of two differ-
ent layers of liquid.

On Figs. 10 and 11 the results are given of a
comparison of remarkable experiments [6] and the
results of the theory.

Of course, based on the experimental data
(a) — (d) presented in Fig. 9, it is difficult to imag-
ine how a wave with hair arises from the initial
harmonics. Calculations come to the rescue. There
are three different harmonics according to them.
They begin to converge and interact as they ap-
proach resonance. It is shown in Fig. 10.

In particular, these three harmonics can form
(d) wave. Further development of this wave is
shown in Fig. 11. In this case, it is assumed that we
are at some fixed point of the resonant band

There is a qualitative consent of the calculated
profiles and the wave profiles in Figs. 9—11. In par-
ticular, Fig. 11 describes the experimental data al-
most on all length of the container. In the certain
cases the discrepancies are only near the boundaries.

5. The birth of multivalued waves as a stage
in the formation of galaxies.

Modern cosmology believes that the Universe
arose from a certain singularity, very small in size
and shaped like an ideal sphere. At some point in

11

time, for unknown reasons, the sphere began to
rapidly expand, and a certain substance appeared in
it. When the expansion slowed down somewhat,
gravity emerged. Thanks to it, the substance began
to slowly gather around the disturbances in the
density that arose at the beginning of the expansion
of the sphere. The emergence of stars and galaxies
is associated with the existence of quantum dis-
turbances that arose in the initial period (inflation)
and the subsequent grouping of matter around these
disturbances due to gravity. The emergence of stars
took hundreds of millions of years. Then the for-
mation the galaxies from the stars also took at least
a billion years.

The above applies to the generally accepted
(standard) model of the development of the Uni-
verse. Along with this model, other models well
known to specialists have been developed. In re-
cent years, models have appeared related to the
possibility of an “eruption” of our Universe from
the pre-universe. One of them is developed by
Galiev and Galiyev [4, 12].

The main assumptions and stages of the evo-
lution of the Universe from the pre-universe are,
according to the latest model: 1. The pre-universe
exists in multidimensional space-time. This pre-
universe is described by a scalar field that has its
own structure. The field is roiled by the quantum
fluctuations; 2. At any moment the pre-universe
gives birth to billions of ‘seeds’ of rapidly evolving
universes, one of which accidentally evolved into
our Universe; 3. The Universe sprang into exist-
ence due to quantum fluctuations that fragment
some multidimensional scalar ‘seed’ into vibrating
elements having very high energy. 4. The elements
are modelled as one-dimensional  strings;



MATEMATHUKA, MEXAHUKA

015
A

Fig. 11. Comparison of theoretical results and experimental data [6]. The thin line defines a seed disturbance
whose amplitude is increased by 100 times
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5. Highly nonlinear oscillations (waves) of those ele-
ments emitted very heavy particles of mass and ener-
oy which formed the four-dimensional spacetime.
Our Universe appeared with huge energy, mass and
the finite size; 6. The spacetime began to spread very
rapidly as more and more particles appeared and the
heavy particles began breaking up into lighter parti-
cles and the energy continued to transform into mass.
It was the Universe’s rapid growth spurt [4, 12].

All of the above provisions of the described
theory are, of course, speculative. This makes them
not much worse than all other theories of the origin
of the Universe. In this article, the Galiev-Galiyev
model (MGG) is supplemented with results that can
be called verifiable, and even qualitatively consistent
with observations. The fact is that in 2022 the James
Webb Space Telescope (JWST) was launched into
space [13, 14]. In the last vear, he began sending
information that contradicted the standard model.
According to it, well-developed and large galaxies
already existed 300 million years ago. Therefore, the
existing theory has come into conflict with observa-
tions and another theory is needed.

The MGG [4, 12], which is extended to the
case of galaxy formation, is proposed here. It is as-
sumed that at the moment the expansion begins, the
Universe is filled with a scalar field described by the
nonlinear Klein—Gordon equation. The field is very
viscous and very dense. During the expansion pro-
cess, viscosity and density rapidly decrease. Condi-
tions are created for the growth of initial disturb-
ances and the emergence of turbulence. In particular,
at the front of the expanding sphere, due to the

Richtmyer—Meshkov instability, multivalued waves
and vortices arise. Qualitatively, this process could
correspond to that presented in Figs. 5, 7, 9 and 12.

Fig. 12. This image was originally captioned "Coexist-
ence of three patterns" and was additionally noted:
"This poster was created for the 1996 APS-DFD Gal-
lery of Fluid Motion by Paul Rightley, Robert Benja-
min and Peter Vorobieff. It won the Gallery of Fluid
Motion Award". This image was obtained from
http://cnls.lanl.gov/~azathoth/cover.html

From presented above calculations and
Figs. 5,7,9,12[7, 10, 11] it follows that the waves
and vortices arising from the Richtmyer—Meshkov
instability can be quite large, incomparably larger
than those that can arise due to quantum perturba-
tions , which are appearing in the standard model
of cosmology. Multivalued waves arising in spher-
ical resonators can be no less complex. Examples
of such waves are given in Fig. 13.

; Q a(sinfed (a0 ten) E0.1

o'(an(ed a0t =016
i) = = = —
= = = =

=0.22

o{sin{ed" (a0 )

Fig. 13. Calculations for the case of purely harmonic excitation sin (®f) of a sphere boundary (left). Calculations
for the case of excitation of the sphere boundary by a disturbance sin® (o¢) (left)
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Curves of Fig. 13 were obtained on the basis
of an approximate solution of equation (3) written
for spherical waves. The solution technique is simi-
lar to that presented in section 1 of this article. The
functions defining the traveling waves were found
from equations similar to equation (18).

It can be seen that waves reminiscent of Eu-
ler’s figures [4, 12, 15] (left) can appear inside the
sphere. On the other hand (right), resonant particle-
waves may appear inside there.

The calculation is given for 4 points in dimen-
sionless time (0.1, 0.19, 0.195 and 0.21). A com-
parison of linear (thin lines) and nonlinear (thick
lines) calculations of standing spherical waves is
given. The amplitude of linear waves is increased
by 1000 times. In general, the results of the linear
calculation corresponded to the spherical Bessel
functions.

As a result of this calculation, we can assert
that the solutions of the equation describe, qualita-
tively, a strongly nonlinear version of the spherical
Bessel functions. The above, in our opinion, ex-
plains the success of using spherical Bessel func-
tions in analyzing the results of highly nonlinear
processes. We are referring to the first moments of
the existence of the Universe, when it increased
from Planck dimensions to the size of elementary
particles. At the pressure and temperature that ex-
isted at that time, all wave processes were extreme-
ly nonlinear. However, when analyzing the cosmic
microwave background radiation, a linear version
of the spherical Bessel functions is used, and ap-
parently successfully. The success of the analysis is
apparently due to the fact that linear theory usually
predicts frequencies and wavelengths quite accu-
rately. It can make a huge mistake in the ampli-
tudes of the waves, as well as with all sorts of
phase transitions in the original scalar field. The
transitions can be determined by jumps, and multi-
valued zones, in the profiles of nonlinear waves,
similar to those shown in Fig.13.

The amplitude of the wave increases greatly,
when approaching the center of the sphere. At the
same time, the nature of the wave change resem-
bles the results obtained for one-dimensional, plane
waves (Figs. 1, 2, 3, 10, 11). If we do not consider
that we are dealing with multivalued waves, then in
general the change in multi-valued waves resem-
bles the change in a linear spherical wave, in par-
ticular spherical Bessel functions.

On Fig. 14 shows examples of calculating the
process of decay of the surface of an expanding
sphere of a scalar field. It is taken into account that
during the expansion process the field viscosity
rapidly decreases. The calculation parameters were
taken completely arbitrarily. The traveling wave

14

parameter is plotted along the coordinate. The in-
fluence of the initial energy of the scalar field C
(see (2)) on D is studied .

On Fig. 14 curves are plotted corresponding to
approximate solutions of the nonlinear Klein-
Gordon equation written taking into account the
influence of vacuum viscosity and stationary ener-
gy of the scalar field. The seed perturbation was
specified as a solution to the linearized equation.
The value of vacuum viscosity changed with de-
creasing curvature of the sphere surface. From
Fig. 14 one can see how, as the wave formation
propagates , the waves of the front deviates more
and more from the linear, harmonic description.

One can even say that there is some corre-
spondence between figures 14 and 12, 7, 5, 4. In-
deed, at the beginning of the process, as follows
from Figs. 14 and 12, wave formation on the sur-
face of an expanding sphere is described by a har-
monic law. Further, the influence of nonlinearities,
instability and viscosity quickly increases, while
the amplitude of waves @ decreases. Folds appear
on the front waves, well corresponding to the Euler
figures [4, 12, 15].

Under certain circumstances, these folds can
evolve into loops and closed structures (see Figs. 1,
4, 7, 8). Based on my earlier publications [4, 12],
these closed structures can be interpreted as vorti-
ces (Figs. 4, 5). But in any case, the results Fig. 14
are qualitatively consistent with the experimental
data presented in Fig. 12.

Thus, from the presented results, as well as
experiments, it follows that the occurrence of seed
disturbances, which subsequently led to the for-
mation of galaxies, can be associated with the
Richtmyer—Meshkov instability. This instability
could have manifested itself already at the very
early stages of the development of the Universe
and led to the emergence of multivalued waves and
vortices in the matter of the very early Universe.
Apparently, the formation of galaxies began from
this time. After their formation, the birth of stars
inside galaxies began. Perhaps, over time, JWST or
other telescopes will discern faintly luminous gal-
axies in space with a huge mass of matter and very
few formed stars.

Thus, the waves and vortices that arise during
the Richtmyer—Meshkov instability can be quite
large, incomparably larger than those that can arise
due to quantum perturbations appearing in the stand-
ard cosmology model. Therefore, the time required
for the formation of galaxies can be significantly re-
duced. This explains the mysterious result of observa-
tions of the Universe [13, 14] and bring the observa-
tions into agreement with the Big Bang theory.
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Fig. 14. Solutions describing the propagation of a wave from the center of the sphere. On the left are calculations
without taking into account the influence of the stationary energy of the scalar field. On the right, this influence is

taken into account

In conclusion of this part of the article, we
note that the Richtmyer—Meshkov instability is
well known to many specialists. It arises during the
creation and debugging of nuclear weapons and the
propagation of the spherical shock wave during
testing of nuclear weapons.

Final remarks. After all the calculations pre-
sented above, the author very surprise that the de-
veloped theory based on several strong assump-
tions, to a certain extent describes the experimental
data, which were observed during the Richtmyer—
Meshkov instability and the experiments with non-
linear Faraday waves and, also, multivalued Ray-
leigh-Bénard convection (see Fig. 15).

The experimental study of multivalued waves
is a difficult problem. This may be why we did not
find many articles devoted to the experimental
study of multivalued waves. All the more interest-
ing are these articles and the experimental and the-
oretical data presented in [6—11].
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Fig. 15. Counterintuitive waves that arise during Ray-
leigh—Bénard convection in a cylinder with incom-
pressible fluid [9]

We reviewed here the theoretically very inter-
esting experimental results presented in [6—11].
The results were then used to explain some of the
James Webb Space Telescope observations [13, 14]
associated with the appearance of galaxies in the
very early Universe.
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MHOI'O3HAYHBIE BOJIHbI U HEYCTOMUYUBOCTb PUXTMAMNEPA-MEIIIKOBA
KAK ITPUYNHBI BOBHUKHOBEHUA I'AJTIAKTHUK

© II1.Y. I'anues

OKJIeHACKUN YHUBEPCHUTET,
Caitmonac-ctput, 20, 92019, Oxnenn, Hosas 3enanaus

Heckonbko mecsteB Hazan MuactutyT Makca [Inmanka (I'epmanms, Jpe3nen) opraam3oBain MexmyHapoI-
HBI CEMHHAp JUIS BBLAAIOLIMXCS MCCIEIOBATeNe TaKoro 3aMeyaTelbHOTO SIBICHHSA, KaK «3IKCTpeMasbHbIE
BoJIHBD». CeMHHAp BeNM U3BeCcTHBIC npodeccopa Hamme AxmenrieB (ABCTpATMHACKUI HAIMOHANBHBIA YHHUBED-
cuter, Kanbeppa, Asctpanms) [1], XensmyT bpann (Yausepcurer batipotita, 'epmanns) [2] 1 Amun Yabuy6
(Kuotckwuii ynuBepcurer, SAnonus) [3].

SIBneHue «IKCTpeMabHBIX BOJIH» MPHUMEYaTeNbHO TEM, YTO IIMPOKO PACIpPOCTPAaHEHO B MPHUPOJE U B TO
JKe BpeMsl BCe IIMPE UCIIONB3YeTCs B TEXHUKE, B YACTHOCTH, B COBPEMEHHOM ONTHYECKOW CBS3H (HENMHEWHON
onTuke). Pe3ynbTarsl ceMrHapa MUPOKO 00cyxaaroTcs skcrepramu. OHU paccMaTpUBAaIOT HOBbIE MHOT000€-
LIAIOLIME HAlpaBlIeH!sl, BOSHUKAIOLINE B PE3yJIbTaTe MPYMIOBBIX YCHUIIUIL.

Orta craThs sABIsETCS] 0030pOM MOETo JO0KJIa/ia Ha CeMHHape. Bmecte ¢ TeM B HEro BKIFOUEHBI HEKOTO-
pBI€ pe3yIbTaThl MOEH KHHUTH, KOTOpas TOTOBUTCA K medaTtd. OCHOBHBIE KOHTYPHI 3TOW KHUTH 0003HAYEHBI
WnsramosiM Mapatom AkcaHoBudeM B ero cratbe [5]. Kaura mocssiieHa MHOTO3HAYHBIM BOJIHAM, CYIIIC-
CTBYIOIIMM B Pa3IMYHBIX CKAJSIPHBIX MOJISIX. JlenaeTcs mombpITKa OMUCAaHUs Ha 3TOH OCHOBE BCErO PasHOo00-
pasus GyHIaMEeHTATBHBIX (U3NYECKUX SBICHUA OKPYIKAIOIIETO HAC MUPa, HAYWHAS C KBAHTOBBIX SIBIICHUH U
3aKaH4YMBas BOSHUKHOBEHHEM M Ha4aJbHBIM pa3BuTHEM BceeneHHOI.

W3BecTHO, 4TO DHUHIITEHH MBITAJICS TOCTPOUTH EANHYIO (MEXIUCUUILTMHAPHYIO) TEOPHUIO OIS, KOTOpast
o0beHMIA OBl BCe B3aUMOCWCTBHS B IPUPOJIe B €IUHYIO cucTeMy. B MoeMm moxmazne B JlpesneHe caenana
MONBITKA UCIONb30BAHNS ITOM UIEH, YTO MOJYUYMIIO PA3BUTHE B YIIOMSIHYTOW KHUTE U HACTOSIIIEH CTAThE.

B nepBrIX Tpex 4acTsaX 3TOM CTaThbU UCCIEAYETCS YCTOMYMBOCTh PuxTmaiiepa—MemkoBa u BoyiHbl Da-
paznes. B mocnenHelt yacTu paccMaTpuBaeTcs TEOpUsl BOSHUKHOBEHUA BceeneHHoi, npeanoxeHHas B [4, 12].
3apokJeHne TATaKTHK B TIepBble MOMEHTHI Iporiecca cheprdecKoro paclimpeHns Hamled BcemeHHOW cBf-
3BIBACTCS C HEYCTOWUMBOCTBIO PuxT™maliepa—Menikosa.

KiroueBsle cnoBa: HenuHelHoe ypaBHeHHe Kinelina—I'opnona, HeycToiunBoCTh, BonHbI Papajes, Koc-
MuYecKuil Teaeckon «Jbxeimc Y300», 3aporkaeHNe TaJaKTHK, PEBOJIONNSA B KOCMOTOHHUH.
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