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Volume 1. The Evolution of Extreme Waves and Resonances. 

Galiev's book is devoted to waves and their 

mathematical modeling. These are problems that 

have been studied for a long time in science. There-

fore, the place occupied by the book in modern sci-

ence and the significance of its results will not be 

completely clear to all readers, if we, at the very 

beginning of the review, do not lead the readers 

very briefly into the history of the problem of 

waves and their modeling. 

The formation of the concept of waves by man-

kind goes back to ancient times. However, this con-

cept acquired a scientific meaning relatively recently, 

at the end of the Middle Ages, in the works of Leo-

nardo da Vinci, Galileo, Descartes and Huygens. In 

particular, da Vinci came to the conclusion that the 

propagation of both sound and light has a wave na-

ture. Galileo wrote … That a glass of water may be 

made to emit a tone…. Sometimes happens, the tone 

of the glass jumps an octave higher…. each of the 

aforesaid waves divides in two…. Galileo also dis-

cussed a row parallel, equidistant streaks excited on a 

brass plate. Thus, Galileo was studying the wave pat-

terns on water and solid body surfaces, and described 

the nonlinear wave effect. Pondering the problem of 

creating a pendulum clock, Galileo and Huygens ap-

proached the problem of resonances and synchroniza-

tion. Later it was found that the vast majority of the 

observed waves can be described as harmonic oscilla-

tions, as shock waves, or as solitary waves (various 

types of solitons). These are the main classes of 

waves well studied by the end of the 20th century. 

The idea of describing nature and modeling nat-

ural processes using numbers originated in even 

deeper antiquity. Pythagoras formulated it quite clear-

ly. He approached this idea by studying the harmon-

ics of string vibrations. He singled out his own (reso-

nant) vibration modes (interestingly, Galileo's father 

repeated Pythagoras's experiments with stretched 

strings almost 2000 years later. So the interest in vi-

brations and waves in the Galilean family was almost 

hereditary!). The numbers allowed Pythagoras to 

formulate clearly his famous theorem. However, the 

idea of mathematical modeling of natural and tech-

nical processes received an almost modern sound on-

ly in the works of Galileo and Newton. However, 

they did not explicitly set the task of modeling wave 

phenomena. The first wave equation was derived in 

1748 by d'Alembert (D'Alembert) [2]. It describes the 

vibrations of the string and many other wave process-

es and has the form 

02  aatt ucu .      (1) 

Perhaps, when deriving this equation, 

d'Alembert had in mind the results of Pythagoras, 

having received a very general result on which the 

entire modern wave theory is based. In particular, 

some ways of generalizing the d'Alembert equation 

are related to taking into account nonlinear effects. 

It is interesting that Galiev explicitly considers the 

theory of his book as a generalization of 

d'Alembert's result to the cases of strongly nonline-

ar waves, waves with complex folded (multivalued) 

profiles, and particle – waves. That is, he considers 

extreme waves that have practically not been stud-

ied in science. Modeling these waves is reduced to 

using one of the following equations  
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The above equations cover a huge generality 

of strongly nonlinear one-dimensional waves. In 

particular, equation (2) describes the propagation of 

extreme waves in different media. In this book, (2) 

is used to simulate waves in gas and on the surface 

of shallow fluids. Equation (3) is written for ocean 

waves, and nonlinear Klein-Gordon equation (4) is 

derived for waves in strong scalar fields. 
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The left sides of equations (2)–(4) coincide 

with the d'Alembert equation (1). The right sides 

differ from (1) mainly in the presence of nonlinear 

terms. Thus, equations (2)–(4) are a generalization 

of (1). Using this, the author constructs approxi-

mate solutions of the indicated equations of the 

form of traveling waves introduced by d'Alembert. 

These solutions claim to be an original and unified 

description of the vast generality of nonlinear wave 

processes. 

   Jean Leron d'Alembert 

This concludes a very short introduction to the 

book review. We emphasize that the purpose of this 

review is by no means a thorough review of the con-

tent of the book, criticism or approval of its results. 

Our goal is to give the reader an idea of the prob-

lems considered in it, the results obtained, and their 

connection with other results of well-known re-

searchers. In particular, following them the author 

tries to use the most simple mathematical apparatus, 

which at the same time is a significant development 

of ideas, models and mathematical research of such 

geniuses as Euler, d'Alembert, Laplace, Faraday and 

Darwin [2–7] and of such wonderful creators as 

Green, Airy, Boussinesq, Kirchhoff and others [8–

14]. It is on the basis of this approach that the main 

results of the book are obtained. At the same time, as 

the reader can easily see, the book in question is a 

natural development of ideas and results presented 

in more modern studies [14–31]. 

The book (volume I) consists of 4 parts and 

15 chapters. 

Part I contains the basic equations and some 

results that illustrate the main ideas and objectives 

of the book. In the first chapter, equations of the 

form (2) and (3) are derived. Special attention is 

paid to long waves (2). It is shown that from this 

equation follow the equations obtained by Airy and 

Boussinesq (George Biddell Airy and Joseph 

Valentin Boussinesq) [10–11]. 

     George Biddell Airy 

Chapter 2 shows the possibility of the existence 

of multivalued waves whose profile is well described 

by the so-called Euler figures (Fig. 1). Such waves are 

described by equations (2) and (4). It is emphasized 

and demonstrated that in some limiting cases, equa-

tions (2) and (4) can be transformed into each other, 

as well as into one-dimensional equations of electro-

dynamics, the Schrödinger and Gross-Pitaevsky equa-

tions. Consequently, all the above equations in some 

cases have solutions describing some of Euler's fig-

ures [20–23]. The author concludes that these figures 

can determine the waves arising in various structures, 

starting from the atomic level and then through the 

waves of the oceanic scale to the waves that existed 

or exist in the Universe. Of course, the appearance of 

such extreme waves when there is the gravity (that is, 

under terrestrial conditions) is the exception rather 

than the rule! 

Fig. 1. Leonhard Euler, examples of Euler's figures (center) and an example of transresonant evolution of an ex-

treme wave from an almost stepwise to a multi-valued wave and then to the particle – waves that is further trans-

formed into cnoidal and harmonic waves (right) 
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Thus, in Part I the fundamental result is for-

mulated. It turns out that Euler's solutions obtained 

in 1744 describe not only some shapes of rods and 

strings [3, 12, 13], but also some extreme wave 

profiles. It is underlined, that Galiev, based largely 

on Euler's results, predicts the existence of waves 

that have not yet been practically observed. This 

situation is the opposite of the case of the discovery 

of a soliton, which was first observed by Russell 

Scott [9], and only 30 years later was mathemati-

cally described by Boussinesq.  

In Parts II and III, equations (2) and (3) are 

used to investigate the extreme waves generated in 

finite pipes, containers, seas and oceans. The pos-

sibility of these waves appearing is associated with 

the phenomenon of resonance. Let us illustrate it 

with examples of waves excited in a closed tube by 

an oscillating piston (Fig. 2 on the left) and on the 

surface of a liquid excited in a container (Fig. 2 

center and right).  

Fig. 2. Results of the experiments of Ilgamov M.A. and Sadykov A.V. (left) [16] (see, also, Fig. 3). Multi-valued 

resonant waves on the liquid surface (center and right) [24]. The folds on the profile of multivalued waves corre-

spond to the curve Fig. 7 calculated by Euler (Fig. 1) 

Fig. 3. Experimental results of M.A. Ilgamov and A.V. Sadykov (left) [16]. Peter Kapitsa (center) and Lev Landau 

(right) 

Fig. 4. Michael Faraday and extreme Faraday waves. 

https://cdn.britannica.com/94/144794-050-F2600575/Michael-Faraday.jpg
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Fig. 5. Periodical column and crater (oscillons) on the surface of a vertically-excited layer 

Note that experiments with surface waves are 

of great interest for theoretical and experimental 

physics [25–34]. The results of experiments with 

shock waves in tubes are also still of considerable 

applied interest. They are related to the optimiza-

tion of rocket engines. In the Soviet Union, these 

waves began to be experimentally studied many 

years ago due to the initiative of the Nobel Prize 

winners Pyotr Kapitsa and Lev Landau (Fig. 3). 

Part II is devoted to the construction of a gen-

eralized d'Alembert solution for an equation of the 

form (2) and the use of this solution in the study of 

resonant oscillations of media in finite resonators. 

First, in Chapter 3, generalized solutions of an 

equation of the form (2) are constructed. Further in 

Chapter 4 of this part, quadratic – nonlinear, vis-

cous, dispersion and frequency effects on extreme 

waves excited in closed resonators are studied. So-

lutions describing resonant extreme shock waves 

and solitons are constructed. In particular, the data 

of the experiments of Ilgamov M.A. and 

Sadykov A.V. are modeled (Figs. 2 and 3) [16]. 

Chapter 5 covers both closed and half-open resona-

tors. Attention is focused on the influence of cubic 

nonlinearity and the possibility of the appearance in 

the resonators of waves corresponding to the Euler 

figures, as well as on the separation of liquid drop-

lets from its free surface. This takes place during 

atomization of a liquid surface at resonance of its 

volume. The multivalued waves shown in Fig. 2 

accompanied by the appearance of the particle-

waves (Fig. 1, right). A number of results in Chap-

ters 4 and 5 are extended in Chapter 6 to cases of 

resonant forced spherical waves. 

Chapter 7 is devoted to parametrically excited 

extreme Faraday waves. 

Michael Faraday studied the effect of vertical 

vibrations on a layer of loosely bound materials [5]. 

He found the formation of small hills on the initially 

smooth surface of the layers and the slow convection 

of particles due to vibrations. Perhaps his most pop-

ular discovery in the summer of 1831 was that sur-

face waves in a vertically oscillating liquid oscillate 

at exactly half the frequency of exposure. Rayleigh 

[30] recognized that the waves were the result of 

parametric resonance. For an inviscid fluid, this idea 

can be transformed into the Mathieu equation [31]. 

Recent experimental studies of granular media ex-

cited by vertical vibrations have demonstrated a 

wide variety of nonlinear wave phenomena.  
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Experimental and theoretical studies of a ver-

tically oscillating low-viscosity liquid have demon-

strated the emergence of many regular structures 

(surface patterns, for example, rolls, squares or 

hexagons). Some of them are shown in Fig. 5 

(upper and middle rows – experiment, lower row – 
calculations). The theory of these localized periodic 

waves, which are called ossilons, was developed in 

[32]. The richness of surface patterns increases in 

the case of a highly viscous liquid [31]. In particu-

lar, when accelerating in excess of g, the effective 

gravity becomes negative and the layer loses con-

tact with the base. A gap forms between the vibrat-

ing base and the layer. After the impact collision, 

the gap disappears until the next cycle, where the 

process is repeated (Fig. 4, center and right). 

Thus, Chapter 7 touches upon a range of issues 

related to the excitation of extreme Faraday waves. 

Under some conditions, the instability of these 

waves generates vortices and turbulence [32–35]. 

Traditional methods of studying parametrical-

ly excited waves in above cases do not give a satis-

factory result. Therefore, Galiev is constructing his 

own approach to the study of extreme parametrical-

ly excited surface waves. This approach has made 

it possible to describe a huge amount of experi-

mental data published in the last 20 years. Galiev 

connects these data and the results of his theory 

with the effects that occur during earthquakes and 

seaquakes observed by Charles Darwin, approxi-

mately at the same time (1835), when Faraday con-

ducted his experiments. 

Fig. 6. Charles Robert Darwin and the cover of the 

first edition of his book. 

The third part of the book deals with ocean 

waves. Equation (2) and (3) are used. In Chapter 8, 

an approximate solution to Eq. (2) is constructed, 

taking into account the variability of depth, 

quadratically – nonlinear effect and friction of the 

fluid against the bottom. Thus, a generalization of 

the Green law obtained in 1837 is given (George 

Green is the famous English mathematician, physi-

cist and mechanic) [8]. Further, this law is used to 

study the resonance distortion and amplification of 

ocean waves over underwater topographies and 

when running ashore. As a result, extreme ocean 

waves sometimes occur. These include tsunamis 

(chapter 9) and giant storm waves (chapter 10). 

At the first these phenomena were described 

and explained by Charles Darwin in his wonderful 

book “TheVoyage of the Beagle” [6] (Fig. 6). Dar-

win emphasized the dependence of the amplitude 

and shape of the tsunami on the coast and changes in 

depth. He writes: ...and lastly, of its size being modi-

fied (as appears to be the case) by the form of the 

neighbouring coast .... Chapter 9 also discusses the 

coastal evolution of ocean waves into shock forms 

and breakers. Stormy extreme ocean waves are dif-

ferent from tsunamis. Tsunamis become dangerous 

only when they reach the coastal zone. In contrast, 

extreme ocean waves most often occur far offshore. 

The Beagle met such a wave off Cape Horn. Charles 

Darwin wrote ... At noon a great sea broke over us, 

... The poor Beagle trembled at the shock, and for a 

few minutes would not obey her helm;... Had anoth-

er sea followed the first, our fate would have been 

decided soon and for ever ... Chapter 10 shows that 

the occurrence of such extreme ocean waves can be 

associated with wave resonance due to underwater 

topographies and inhomogeneities in ocean thick-

ness due to changes in density and temperature or 

the presence of marine organisms. 

Chapter 11 explores wind waves, specifically 

wind-wave resonance. The one-dimensional wave 

theory developed in Chapter 1 is used. It is known 

that the wind acts on the ocean surface in different 

ways. First, by the surface friction. This mechanism 

generates ripples and waves of moderate amplitude. 

As the waves grow, their effect on the air flow in-

creases. The wind action begins to depend on the in-

clination of the wave surface element to the direction 

of the air flow (wind). In this chapter, an approximate 

theory is developed that takes into account these fac-

tors in cases when the speed of the wind and waves 

are close or equal to each other. Examples of model 

calculations are given. In the last chapter of Part III, a 

model of the transresonant evolution of harmonic 

waves into vortices is considered (Fig. 7). 

This evolution includes the appearance of 

high harmonics and then extreme waves and vorti-

ces. On the whole, apparently, Chapter 15 only out-

lines the direction of research, which, in the au-

thor's opinion, opens up a new way of describing 

the occurrence of wave turbulence [32–35].  
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Fig. 7. Experimental data and an example of calculating wave evolution into vortices 

Fig. 8. De Broglie (Louis de Broglie) and the particle – waves. The passage of a particle – waves through a double 

slit (center) and the interaction of two particle – waves (right) 

In Part IV, previously obtained results are 

extended to physical fields. Fields are a very 

specific and complex area of science, for which 

there are no fundamental experiments that de-

termine the possibility of extreme waves. It is 

emphasized that equations (2), (4), the equations 

of electrodynamics, Schrödinger and Gross-

Pitaevsky follow from each other and therefore 

have similar solutions [23]. Therefore, in this 

part, the author makes extensive use of the expe-

rience gained in the study of extreme surface 

waves. At the same time, the studies and results 

of Part IV are enough far from analogous to 

those obtained for surface waves. The fact is that 

the study of scalar fields opens the way to a cer-

tain understanding of the fundamental problems 

of the origin of matter and even the Universe. 

The peculiarity is also in the fact that in relation 

to the indicated regions the solutions should de-

scribe the particle-waves and answer the ques-

tions of quantum mechanics, and some of them 

do not yet have a generally accepted explanation. 

This idea is illustrated in Chapter 13, where 

the solutions of the nonlinear Klein-Gordon equa-

tion describing Euler's figures, as well as the parti-

cle-waves moving in space, are constructed. It is 

interesting that such particle-waves arise in some 

cases of vertical excitation of liquid layers. These 

are drops on the layer surface that can move or 

"walk" together with the wave [25–28]. 

Particles (drops) located at the top of a travel-

ing surface wave have attracted such attention be-

cause they can be interpreted as a kind of analogue 

of quantum waves. Such a particle-wave can be 

considered also as some amazing variant of Fara-

day waves, which at the same time can be consid-

ered as some analogue of pilot de Broglie waves 

(Fig. 8). 
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These wave – particles are used to explain the 

results of classic double slit experiments. The his-

tory of these experiments goes back more than two 

centuries. Their results played a significant role in 

the discovery of the wave nature of light, and then 

formed the basis for the most important provisions 

of quantum mechanics. However, these results are 

difficult to interpret unambiguously. This is espe-

cially difficult to do in the light of recent experi-

ments. The purpose of Chapter 14 is to analyze the 

results of these experiments and offer their new 

understanding, based on taking into account the 

possibility of the appearance of virtual particle-

waves, the theory of which was developed in Chap-

ter 13, during implementation of the experiments. 

By themselves, the scalar fields described by 

the Klein-Gordon equation are not "made" of any-

thing. Fields are what the world is made of. There-

fore, fields are often the simplest way to describe 

various natural phenomena. In particular, field the-

ories are often used to introduce new concepts and 

methods. In Chapter 15, scalar fields and their ap-

proximate solutions in the form of extreme particle-

waves are used to simulate quantum processes. 

Conclusion on the review. Extreme waves 

are relatively poorly studied objects about which 

they often say “Extreme waves that appear from 

nowhere and disappear without a trace anywhere” 

[36 – 38]. In this regard, their behavior resembles 

the situation with elementary (quantum) particles, 

which also unexpectedly appear, move along un-

known trajectories and disappear into no one 

knows where if the measuring device does not have 

time to fix them. The main goal of the book is to 

study these amazing waves using solutions to non-

linear wave equations and experimental data. 

The main concept used in this is resonance. It 

is impossible to name a field of knowledge in 

which this concept could not be used. However, 

although the phenomenon of resonance is well 

known, at the same time, the evolution of waves 

near resonances has been insufficiently studied. 

Indeed, in resonance regions, nonlinear phenomena 

begin to play an important role; therefore, certain 

difficulties arise in the study and solution of non-

linear wave equations. 
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